On iterated algebraic K-theory and the red-shift conjecture:
John Rognes, Algebraic K-theory of finitely presented ring spectra, lecture at Schloss Ringberg, Germany, January 1999 (pdf, pdf)
John Rognes, Algebraic K-theory of finitely presented ring spectra, Oberwolfach talk September 2000 (OWF abstract pdf scan)
Christian Ausoni, John Rognes, The chromatic red-shift in algebraic K-theory, Enseign. Math. (2) 54 (2008), 9-11. (pdf, pdf, doi:10.5169/seals-109873)
On the topological Hochschild homology of topological modular forms:
On the first algebraic K-theory of topological K-theory (iterated algebraic K-theory):
Christian Ausoni, John Rognes, Algebraic K-theory of topological K-theory, Acta Math. Volume 188, Number 1 (2002), 1-39 (euclid:acta/1485891473)
Christian Ausoni, John Rognes, Rational algebraic K-theory of topological K-theory, Geom. Topol. 16 (2012) 2037-2065 (arXiv:0708.2160, doi:10.2140/gt.2012.16.2037)
Interpretation of algebraic K-theory of topological K-theory (iterated algebraic K-theory) as the K-theory of BDR 2-vector bundles:
Nils Baas, Bjørn Ian Dundas, John Rognes, Two-vector bundles and forms of elliptic cohomology, London Math. Soc. Lecture Note Ser., 308, Cambridge Univ. Press, Cambridge, 2004 (arXiv:0909.1742, doi:10.1017/CBO9780511526398.005)
Nils Baas, Bjørn Ian Dundas, Birgit Richter, John Rognes, Stable bundles over rig categories, Journal of Topology, Volume 4, Issue 3, September 2011, Pages 623–640 (doi:10.1112/jtopol/jtr016)
Divisibility of a gerbe on the 3-sphere seen as a BDR 2-vector bundle is in
Last revised on October 6, 2024 at 19:57:43. See the history of this page for a list of all contributions to it.